On the Infinite Product of C0 - Semigroups
نویسنده
چکیده
Recently, parabolic equations in infinite dimensions have received much attention in literature (see, for example, Pa Prato [DP] and Da Prato Zabczyk [DZ]). In particular, Cannarsa and Da Prato [CD1] showed that the Laplacian (with a certain weight) generates a semigroup on BUC(H), the space of all bounded uniformly continuous functions on a separable Hilbert space H, which is called the heat semigroup (see also [CD2]). This semigroup can be expressed as an infinite product,
منابع مشابه
Evolutionary Semigroups and Dichotomy of Linear Skew-product Flows on Locally Compact Spaces with Banach Fibers
We study evolutionary semigroups generated by a strongly continuous semi-cocycle over a locally compact metric space acting on Banach fibers. This setting simultaneously covers evolutionary semigroups arising from nonautonomuous abstract Cauchy problems and C0-semigroups, and linear skew-product flows. The spectral mapping theorem for these semigroups is proved. The hyperbolicity of the semigro...
متن کاملStabilizations of the Trotter-kato Theorem and the Chernoff Product Formula
This paper concerns versions of the Trotter-Kato Theorem and the Chernoff Product Formula for C0-semigroups in the absence of stability. Applications to A-stable rational approximations of semigroups are presented.
متن کاملClassification of Monogenic Ternary Semigroups
The aim of this paper is to classify all monogenic ternary semigroups, up to isomorphism. We divide them to two groups: finite and infinite. We show that every infinite monogenic ternary semigroup is isomorphic to the ternary semigroup O, the odd positive integers with ordinary addition. Then we prove that all finite monogenic ternary semigroups with the same index...
متن کاملOn the relation of closed forms and Trotter’s product formula
The aim of this paper is to give a characterization in Hilbert spaces of the generators of C0-semigroups associated with closed, sectorial forms in terms of the convergence of a generalized Trotter’s product formula. In the course of the proof of the main result we also present a similarity result which can be of independent interest: for any unbounded generator A of a C0-semigroup e tA it is p...
متن کاملC0-semigroups of linear operators on some ultrametric Banach spaces
C0-semigroups of linear operators play a crucial role in the solvability of evolution equations in the classical context. This paper is concerned with a brief conceptualization of C0-semigroups on (ultrametric) free Banach spaces E. In contrast with the classical setting, the parameter of a given C0-semigroup belongs to a clopen ball Ωr of the ground field K. As an illustration, we will discuss...
متن کامل